Integration of MBR Technology and Desalting Membranes for Water Reuse

James DeCarolis, Samer Adham, Joan Oppenheimer William H. Pearce, Larry Wasserman,

Membrane Technology Conference & Exposition March 6-9 2005 Phoenix, Arizona

Acknowledgments

USEPA, Bruce Macler, Ph.D., Vance Fong, P.E.

- Metropolitan Water District of Southern, CA (DRIP), Sun Liang, Ph.D., P.E.
- San Diego County Water Authority, Cesar Lopez
- Bureau of Reclamation (USBR), Water Treatment Engineering and Research Group

Acknowledgments (cont.)

 City of San Diego MWWD, Steve Lagos, Neil Tran, Dwight Smith

- Membrane Suppliers, Saehan, Hydranautics, Osmonics, Kubota, Zenon and Mitsubishi
- EDC/PPCP Sample Analysis, Greg Loraine (SDSU) and Shane Snyder (SNWA)

Outline of Discussion

- Project Background
- Materials and Methods
- MBR & NF/RO Performance Data
- EDC/PCPPs Analysis
- Cost Estimate Analysis
- Conclusions

Project Background

 Funding provided by the USEPA under DRIP to evaluate MBR as pretreatment to RO

 Project was partially conducted in parallel with USBR funded project aimed at optimizing various MBR Systems for water reuse

Conducted at the PLWTP located in San Diego

PLWTP uses 1 MGD Potable Water for Industrial use

→ Wastewater at PLWTP is inherently high in salt (TDS=1,600 mg/L)

City considering MBR > RO System to meet Reclaimed Water Needs

Project Objectives

 Evaluate MBR Systems recently introduced to US Market

 Assess the Impact of adding Coagulant and Polymer to the MBR Feed Water on MBR Performance

 Evaluate MBR performance under extreme operating conditions (Increased Flux, Low HRT)

Project Objectives

 Evaluate several different desalting membranes (NF/RO) following pretreatment by MBR

 Evaluate the ability of commercially available MBR/RO Process units to Remove EDC/PPCPs from advanced primary effluent

 Perform cost analysis: 1.) compare cost of conventional and MBR as pretreatment to RO 2.) determine the cost associated with RO during wastewater reclamation

Material and Methods

Pilot Testing

 Performed pilot testing: train consisted of MBR UV/chloramine NF/RO

 Phase I - Operated New MBR Systems on Raw Wastewater and Advanced Primary Effluent

 Phase II - Operated Established Suppliers on advanced primary effluent (tested extreme operating conditions)

 Throughout MBR testing operated RO/NF downstream of MBR - in all tested 4 different desalting membranes flux 10-12 gfd FWR 50 -75%

Pilot Treatment Train

MBR Pilot Systems (New Suppliers)

KUBOTA

US Filter

MBR Pilot Systems (Established)

MITSUBISHI

MBR Membranes Specifications

	Units	Kubota	Zenon	Mitsubishi
Commercial Designation		Туре 510	ZW 500 D	Sterapore HF
Membrane Classification		MF	UF	MF
Membrane Configuration		Vertical	Vertical	Horizontal
Approx. Size of Element (LxWxH)	mm	490X6X1000	1930X711X229	886X606X1483
Number of Sheets per membrane cassette		100		
Number of Fibers per membrane cassette			~2700	~1820
Inside Diameter of Fiber	mm		0.75	0.35
Outside Diameter of Fiber	mm		1.9	0.54
Length of Fiber	m		1.7	3.24
Active Membrane Area (MBR Pilot)	$ft^2 (m^2)$	1721 (160)	720 (67)	1076 (100)
¹ Flow Capacity (MBR Pilot)	gpm	17.6	7.5	9.2
Flow Direction		outside - in	outside - in	outside - in
Nominal Membrane Pore Size	micron	0.4	0.04	0.4
Absolute Membrane Pore Size	micron		0.1	0.5
Membrane Material/Construction		chlorinated polyethylene; flat sheet	proprietary/ hollow fiber	polyethylene/ hollow fiber
Recommended Design Flux	gfd (L/h-m ²)	14.7 (24.9)	15 (25.4)	12.3 (20.8)
Standard Testing pH range		5.8 - 8.6	5-9.5	2-12
Vacuum Pressure for System	psi (bar)	<3 (<0.2)	<11.9 (<0.8)	<5.8(<0.4)

¹ Flow capacity based on MFG recommended design flux and active membrane supplied with pilot unit.

Desalting Membranes Specifications

	Units	Saehan	Saehan	Hydranautics	Osmonics
Commercial Designation		RE 4040-BL	RE 4040-FL	LFC3-4040	HL-4040FF
Membrane Type		¹ RO	² RO	² RO	NF
Active Membrane Area	ft ² (m ²)	85 (7.9)	85 (7.9)	85 (7.9)	88.5 (8.2)
Membrane Material		Polyamide (TFC)	Polyamide (TFC)	Polyamide (TFC)	Polyamide (TFC)
Operating pH Range		3-10	3-10	3-10	3-10
Max. Feedwater Turbidity	NTU	<1	<1	1.0	<1
Max.Feedwater SDI ₁₅		<5	<5	<5	<5
Max. Operating Temperature	°F (°C)	113 (45)	113 (45)	113 (45)	113 (45)
Free Chlorine Resistance	mg/L	<0.1	<0.1	<0.1	<0.1
Specific Flux @ 25 deg C	gfd/psi	0.20	0.15	0.10	0.27
Max. Operating Pressure	psi (bar)	600 (40)	600 (40)	600 (40)	600 (40)

¹ Low Pressure RO; ² Fouling Resistant RO

MBR Pilot Operating Conditions

	US Filter	Kubota	Zenon	Mitsubishi
Raw Wastewater	√	✓		
Advanced Primary	√	√	 Image: A start of the start of	\checkmark
Flux, gfd	14.5	15	22	15
HRT, hrs	5.7	5.0	2.0	2.8
SRT, days	20-60	11- 24	18-20	25-30
MLSS, g/L	9-12	9-16	10-12	10-12

RO Operating Conditions

Testing Phase	Membrane	Feed Source	Biofouling Control	Flux (gfd)	Recovery (%)
	Hydranautics LFC3-4040	Kubota MBR	UV/Chloramine	10-12	50
T	Saehan RE4040-BL	Kubota MBR	UV/Chloramine	10-12	50
1	Osmonics HL-4040	Zenon and Mitsubishi MBR	Chloramine	10-12	50
	Saehan RE4040-FL	Zenon and Mitsubishi MBR	Chloramine	10-12	50
II	Saehan RE4040-FL	Zenon and Mitsubishi MBR	Chloramine	12	75

MBR PERFORMANCE DATA

MBR Operational Data

Kubota MBR System, 2002 - Point Loma

MBR Operational Data

Zenon MBR System, Point Loma

MBR Particulate Removal

Kubota MBR System, 2002 - Point Loma

MBR Organic Removal

Zenon MBR System, 2003 - Point Loma

MBR Inorganic Nitrogen Removal

Kubota MBR System, 2002 - Point Loma

MBR Microbial Rejection

RO PERFORMANCE DATA

RO Operational Data

Hydranautics LFC3 Membrane, 2002 - Point Loma

RO Operational Data

Saehan RE4040 FL Membrane, 2003 - Point Loma

RO Water Quality Data

Paramater	Units	RO Feed	RO Permeate
Conductivity	micromho	2,620	117
Ammonia-N	mg/L	0.8	0.3
Nitrate/Nitirite -N	mg/L	18.9	4.80
Nitirite -N	mg/L	0.034	0.01
TKN	mg/L	0.99	ND
Ortho-Phosphate-P	mg/L	0.53	ND
UV 254	cm⁻¹	0.139	0.007
TOC	mg/L	6.6	ND
Total Hardness	mg/L	424	3.38
Alkalinity	mg/L	75	5.63

*Values shown are median of measured values throughout testing.

EDC/PCPPs Analysis

Sampling was done Phase II Testing (Zenon and Mitsubishi MBRs)

 RO membrane was Saehan 4040 FRM membrane flux of 12 gfd feed water recovery = 75%

 Samples taken in summer and late autumn; analyzed by two different laboratories

- Costs were developed for two reclaimed water treatment trains: conventional and MBR
- The analysis also compared disinfection costs of chlorine vs. UV to meet Class I unrestricted reuse CDHS Title 22 Standards
 - RO costs were estimated to achieve target TDS of 1,000 mg/L. Sizing of RO system based on required blend ratio

Conventional Train

Oxidation Ditch/MF w/RO Blending and Disinfection

MBR Train

MBR w/RO Blending and Disinfection

Cost Items: Ditch + MF and MBR

Capital Costs	Ditch + MF	MBR
Headworks	X	Х
Screening Facility (0.8 mm)		Х
Secondary Treatment (Oxidation Ditch)	X	
Chlorine handling, storage and metering	X	X
Operations-laboratory building	X	X
Maintenance Building	X	X
Microfiltration Unit	X	
MBR Process Costs (e.g. Basins, Blower and		
Pump Building, Mech.)		X
MBR Membrane System		X
O&M Costs	Ditch + MF	MBR
Personnel	X	X
Power	X	X
Spare Parts	X	X
Chemicals	X	
Sludge handling and disposal	X	X
MBR Membrane Replacement		X
MBR Chemical Cleaning		X
MF O& M Costs	X	

Cost Items: Chlorine Contact and UV

Capital Costs	Chlorine Contact	UV
Chlorine Contact Tank	X	
Chlorine handling, storage and metering	X	
UV System		X
O8M Costs	Chlorine	
Call Costs	Contact	0
Personnel	X	X
Power	X	X
Replacement Lamp Costs for UV		X
Chemicals	X	

Cost Items: Reverse Osmosis

Capital Costs	RO
RO System	X
Chloramine handling, storage and metering	X
O&M Costs	RO
Personnel	Х
Power	X
Chemicals for RO	X
RO Membrane Replacement	X
RO Cartridge Filter Replacement	X
RO Maintenance	X

Conclusions

- All MBR systems produced effluent suitable for RO by achieving high removal of particulate, organic, nitrogen and microbial contaminates
- MBR systems operated successfully on advanced primary effluent containing polymer / coagulant residual and under extreme operating conditions
- Different types of desalting membranes from various suppliers successfully operated on municipal wastewater pretreated with MBR

Conclusions

• MBR/RO effective barrier for most of the EDC/PCPPS analyzed

 Cost estimates showed 1 MGD MBR/Cl₂ reclaimed water train to be \$3.13/Kgal compared to \$4.31/Kgal for conventional train consisting of Ditch + MF/Cl₂

Integration of MBR Technology and Desalting Membranes for Water Reuse

James DeCarolis, Samer Adham, Joan Oppenheimer William H. Pearce, Larry Wasserman,

Membrane Technology Conference & Exposition March 6-9 2005 Phoenix, Arizona

