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The Long Beach Water Department (LBWD), similar to many Southern California 
utilities, have been facing the issue of decreased potable water supplies.  Because of its 
location, the City of Long Beach is ideally situated to take advantage of desalinated 
seawater as a source of drinking water.  However, the primary barrier to seawater 
desalination has been its relatively high cost as compared to other available water 
sources.  One method of reducing the operational cost for seawater desalination being 
proposed by LBWD is through a two-pass nanofiltration (NF) membrane process, which 
has the potential of lowering the overall energy required.  In this configuration, permeate 
from the first pass is treated by the second pass membranes in order to produce potable 
water.  This paper will present LBWD’s investigation into the behavior of these lower-
pressure membranes during seawater desalination. 
 
Background 
 
Seawater membrane desalination is both capital and energy intensive.  In past years, 
research trends have focused on increasing membrane productivity and system 
recovery in order to minimize footprint and system capital cost.  High productivity and 
system recovery is typically achieved by increasing the overall system pressure.  
However, given the favorable terms and the high electrical prices in today’s market, 
maximizing recovery may be misdirected.  The following is a rudimentary cost analysis 
performed to assist LBWD better direct research approach. 
 
LBWD currently estimate the capital cost for desalination at five dollars ($5) per gallon 
capacity.  The capital financing cost associated with building a desalination facility, 
assuming an interest rate of five percent (5%), ranges from $373 per acre-foot (AF) to 
$302 per AF depending on the term of the financing (Table 1).  The operating energy 
cost associated with seawater desalination has been reported to vary from 11 to 16 
kilowatt-hour per 1000 gallons of water produced (kW/kgal).  Energy prices vary 
between five cents per kilowatt (kW) to ten cents per kW, where five cents is based on 
purchasing power directly from the power generator (“direct access”) rather than through 
the energy grid.  However, the California Public Utilities Commission (PUC) has currently 
ruled that no new load can sign up for direct access.  Thus, the industrial retail energy 
price will likely be near ten cents per kW in California.  Using the aforementioned 
assumptions, if the energy required to desalination is at 16 kW/kgal (upper end of 
reported values), the unit production cost will be on the order of $543/AF (Table 2).   
 

Table 1.  Range of capital debt financing cost in dollars per acre-foot for various 
terms at an interest rate of 5%. 

 
Term of Financing 20 years 25 years 30 years
Interest Rate 5% 5% 5%
Debt Service/AF ($373) ($330) ($302)  

 



 
Table 2.  Unit production cost in $/acre-foot for various power prices and energy 
requirements.  The grayed areas represents regions where power prices are not 

likely for California. 
 

10 11 12 13 14 15 16
$0.04 $136 $149 $163 $176 $190 $204 $217
$0.05 $170 $187 $204 $221 $238 $254 $271
$0.06 $204 $224 $244 $265 $285 $305 $326
$0.07 $238 $261 $285 $309 $333 $356 $380
$0.08 $271 $299 $326 $353 $380 $407 $434
$0.09 $305 $336 $366 $397 $428 $458 $489
$0.10 $339 $373 $407 $441 $475 $509 $543

kW/1000galPower $/kW

 
 
Anecdotal evidence suggest that a potential 20% energy saving may be achieved using 
the 2-pass NF approach.  However, the capital consequence may be a 10% increase in 
cost.  Using the above financial analysis, if a 10 MGD facility was being financed for 30 
years at 5 percent interest and if the operating cost is 16 kW/kgal at $0.10/kW, annual 
debt service repayment would be $302/AF while the desalination energy alone would be 
$543/AF.  At these financing terms, a 10% increase in capital would result in a $31/AF 
increase, where a 20% reduction in operating cost would result in a saving of $68/AF.  
Given that energy savings significantly exceeds the added debt financing cost, the focus 
of research at LBWD was directed towards reducing unit energy cost.   
 
Literature Review 
 
NF membrane was primarily developed as a membrane-softening process, offering an 
alternative to chemical softening (1).  NF is also effective in the removal of disinfection 
byproduct (DBP) precursors (2-4) and other synthetic organic chemicals (SOCs) (5).  
There are currently several full-scale NF plants worldwide that target the removal of 
hardness and/or DBP precursor removal from surface or groundwater supplies. 
 
Recently, the Saline Water Conversion Corporation in Saudi Arabia (SWCC, Saudi 
Arabia) evaluated the effectiveness of NF as a pretreatment to seawater reverse 
osmosis (SWRO) membranes (6-9).  The main objectives for the NF pretreatment of 
SWRO feed were to: 
 
a) minimize particulate and microbial fouling of the SWRO membranes by removal of 

turbidity and bacteria 
b) prevent scaling by removal of the hardness ions, and 
c) lower the operational pressure of SWRO process by reducing the feedwater’s total 

dissolved solids (TDS) concentration 
 
Several publications presented by SWCC addressed various issues related to the 
application of NF pretreatment for SWRO.  Early work was performed at a pilot facility 
(6-8) in which Persian Gulf seawater (TDS = 44,000 mg/L) was first pretreated through 
multimedia filters, cartridge filter, and NF membranes.  The NF permeate was 
subsequently treated through the SWRO process, which produced potable water.  The 
concentrate was further processed through a multistage flash (MSF) distillation unit.  
Various unspecified NF and SWRO membrane types were evaluated in the study. 



Subsequently, SWCC converted one of two SWRO parallel trains (Umm Lujj SWRO 
plant, Saudi Arabia) from a single SWRO into a NF-SWRO train to evaluate the NF 
pretreatment (9).  The second identical train was maintained as a single SWRO process 
to serve as the reference process, with each train having a capacity of 0.6 MGD.  For the 
demonstration plant, the NF-SWRO train showed an increase in productivity of 42 
percent and an increase in system recovery from 28 to 56 percent, as compared to the 
single SWRO train.  Additionally, the energy consumption of the NF-SWRO train was 23 
percent lower than the single SWRO train. 
 
Although NF membranes have been previously tested with seawater, the application 
focused on using NF as pretreatment for the reverse osmosis membrane stage rather 
than using these membranes to produce potable water.  In recent years, however, 
significant developments of NF membranes have been made, resulting in products that 
can achieve high TDS rejections (≥ 90%) at lower applied pressures.  These advances 
allow a two-step, permeate-staged NF treatment process capable of producing potable 
water with lower overall applied pressure, and potentially lowering operating energy.  To 
date, this concept does not appear to have been tested, as evidenced by the lack of 
literature in this area. 
 
Materials and Methods 
 
A 9,000 gallons per day (approximate) pilot plant (pilot) was constructed to test the 
feasibility of NF membranes (Figure 1).  The pilot consisted of two-750 gallon storage 
tanks, five-micrometers (5 µm) cartridge filters, two passes of NF membranes and a 250-
gallon, Pass 1 permeate tank, which feeds the Pass 2 NF membranes.  The seawater is 
circulated through a 180,000 BTU chiller to maintain temperature throughout an 
experiment.  The pilot is designed to operate in a continuous loop mode. 
 
To perform testing, approximately 1,500 gallons of Pacific Ocean seawater was 
delivered to the pilot site.  The fresh Pacific Ocean seawater salinity was typically around 
35,000 mg/L, and all cations and anions were consistent with literature.  All permeate 
and brine flows were recycled during testing to minimize concentrating the feed water.  
To ensure steady state during testing, the pilot was operated for at least 3 hydraulic 
detention times prior to sample collection for every test.  The only pretreatment provided 
was the 5-µm cartridge filters.  No antiscalant or other chemicals were added during 
these tests. All water quality analyses were conducted in accordance with Standard 
Methods. 
 



 
 
Figure 1.  Photo of pilot plant used to test nanofiltration membranes for seawater 
desalination. 
 
Results and Discussion 

 
As stated in the literature review, NF membranes have traditionally been considered for 
softening and not desalination.  However, the molecular weight cutoff for some NF 
membranes can overlap with reverse osmosis (RO) membranes because there is no 
standard definition for NF.  Albeit the NF membranes may be “looser” than the RO 
membranes, these lower-pressure membranes can achieve the required salt rejection.  
In earlier research, lower-pressure membranes operated in a 2-pass array was able to 
achieve an estimated 13 kW/kgal unit energy (Figure 2).  For that configuration, the 
permeate TDS was less than 100 mg/L.   Additional power reduction may be achieved 
by slightly sacrificing permeate salinity.  Unfortunately, because the use of lower-
pressure membranes for seawater desalination is not well understood, there are no valid 
models presently available to help assist in optimization.  Thus, to better understand how 
to optimize seawater desalination, various NF and ultra low pressure RO membranes 
(Table 3) were tested to evaluate how each membrane performs with respect to 
manufacturer’s performance specification and how permeate quality is impacted by 
various physical factors that affect performance (ie, vessel loading rate, temperature, 
pressure, etc.).  The understanding of these factors will provide guidelines into 
optimization and full-scale design.  The results of these testing are discussed below.   
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Figure 2.  Test results using lower-pressure membranes to desalinate seawater. 
 
Variation in membrane performance 
 
Membrane suppliers provide performance data for the various membranes supplied.  
However, because of the test conditions applied by each manufacturer may be different, 
agencies considering seawater desalination can not rely solely on manufacturer’s 
performance specification to determine applicability since NF membranes were not 
traditionally used to desalt seawater.  
 
Research was conducted on the ability of select lower-pressure membranes with similar 
performance specification to evaluate their permeate quality at various operating 
pressures.  The results for the FilmTec NF90 membrane comparison against Saehan 
NE90 membrane are shown in Figure 3.  From the performance specification sheet, both 
manufacturers used magnesium sulfate (MgSO4) for performance testing and rejection 
were 95% and 98.5% for the NF90 and NE90, respectively (Table 3).  However, actual 
performance of these membranes differs greatly when application is seawater 
desalination.  The results show that although the NE90 membranes had a higher MgSO4 
rejection, total conductivity rejection was better with the NF90 membranes.   
 
This result illustrates the fact that actual performance may differ greatly compared to 
manufacturer’s performance specification and that membranes need to be tested 
individually based on application.  However, it is important to point out that although the 
membranes performance differs greatly, the two pass array provided flexibility so that 
both membranes was able to achieve potable water quality.   
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Figure 3.  Permeate quality at various operating pressures for NF90 and NE90 
membranes.  Testing for both membranes were conducted at 70oF and loaded at 
1,500 gpd. 
 
Table 3.  Lower-pressure membrane tested to evaluate behavior during seawater 

applications. 
 

mg/L Min. Rej. mg/L Min. Rej.
FilmTec NF90 PA 80 1,850 2,000 95.0% 70
Trisep TS80 PA 81 2,000 2,000 97.0% 100
Trisep1 X20 PA 81 2,000 2,000 99.0% 100
Saehan NE90 PA 85 1,900 2000 98.5% 75
Saehan2 NE90 V.2 PA 85

Manufacturer Test ConditionGeneral Information
Product 

Flow (gpd)
Test P 
(psi)

MgSO4 NaClManufacturer Model Mat'l
Area 
(ft2)

1 Ultra low pressure RO membrane 
2 Custom NF membranes manufactured for this project.  No standard data available. 
 
Temperature affect 
 
It is well know that temperature will affect the salt diffusion rate as colder waters tend to 
“tighten” the membrane property and increase salt rejection.  Testing was performed at 
various temperatures to evaluate magnitude of temperature affect (Figure 4).  As 
expected, for the “loose” NF membranes, colder temperature can dramatically improve 
performance, while high temperatures can deteriorate salt rejection.  Thus, the source 
water must be well characterized to help in determining anticipated potential operating 
needs and appropriately select the best membrane for the individual situation.  For 



example, if the source water is an open intake with large variability, it is important to 
incorporate sufficient operating flexibility to implement operational adjustments to 
continually meet water quality objectives.   
 
This result illustrate the need to understand both performance of the individual 
membranes in terms of salt passage as a function of temperature as well as knowing the 
range of expected temperature fluctuations in the source water.  This will allow proper 
selection of membranes as well as allow development of operational tools to meet 
objectives. 
 

13
14
15
16
17
18
19
20
21
22
23

380 430 480 530 580

Feed Pressure (psi)

C
on

du
ct

iv
ity

 (m
S

)

18 gpm: 51F 18 gpm: 63F 18 gpm: 70F

  
 
Figure 4.  Affects of temperature on permeate conductivity at various pressures.  
Membranes were loaded at a rate of 18 gpm per vessel and each vessel housed 5 
elements. 
 
Affects of pressure 
 
Membrane behavior with increasing pressures was evaluated to better understand how 
lower-pressure membranes perform in seawater desalination applications (Figure 5).  
The results show that a critical point can exist for these lower-pressure membranes and 
can be very pronounced as compared to SWRO membranes.  As illustrated by the 
previous results, temperature can dramatically affect the “tightness” of the membrane.  
The critical point is more pronounced in warmer conditions.  When the temperature is 
cold, NF membrane behave much like RO, where critical point is not reached and 
pressure can be continually applied.  In conditions where a critical point exists (e.g., 
70oF), permeate quality will continue to improve as pressure is applied and convention of 
water dominates.  However, once the critical point is reached, the impact of diffusion 



begins to dominate and water quality can deteriorate.  Thus, the critical point should be 
viewed as the optimal point. 
  
This result illustrates that for each NF membrane, the critical point may exist, with 
temperature playing an important role.  The critical point needs to be identified for each 
individual membrane, which will establish the optimal operating condition for Pass 1.  
Focus should then shift to optimizing Pass 2 to achieve the best quality at the lowest 
pressure.  
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Figure 5.  Affects of pressure on permeate conductivity at various temperatures.  
Membranes were loaded at a rate of 18 gpm per vessel and each vessel housed 5 
elements. 
 
Loading rate 
 
In the earlier section, a critical point was shown to exist for lower-pressure membranes.  
However, natural concern is whether the critical point is constant for all conditions.  
Loading rates were varied to see how the critical point was impacted.  The results show 
that by increasing loading rate, the critical point shifts to the right, allowing higher 
pressures and consequently, achieving a better water quality (Figure 6).  It is 
hypothesized that this shift in the critical point is attributed to the concentration 
polarization affect, where a thin layer of concentrated brine exist near the surface of the 
active layer.  As the loading rate is increased, turbulence may disrupt and flush the 
concentrated brine and minimize salt diffusion.   
 
This result suggests that a higher loading rate should be employed to allow the process 
to reach higher pressures and better water quality.  The impact of operating at a higher 



loading rate is a marginal reduction in recovery (Figure 7).  The reduction is likely offset 
by reduction in energy.  However, a more detailed analysis is needed to better quantify 
the ideal loading rate.   
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Figure 6.  Affects of loading rates on critical point for two temperature conditions. 
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Figure 7.  Affects of increasing loading rate on recovery. 
 
 



Conclusions 
 
• Due to differences in financing, improving operating power costs should be the 

primary focus for those agencies in California interested in seawater desalination.   
 
• Lower-pressure membranes may be employed for seawater desalination but 

individual membrane behavior needs to be quantified independently since 
manufacturer’s performance data may not provide an accurate picture of how the 
lower-pressure membranes will behave in seawater desalination applications.   

 
• Temperature can significantly change the “tightness” or “looseness” of the 

membrane and source water characterization is needed to better understand the 
best membrane for your need. 

 
• When using lower-pressure membranes for desalinating seawater, depending on the 

membrane “tightness” and water temperature, a critical point may develop.  
Optimization should be performed around the critical point, since that is the optimal 
point of applied pressure versus water quality. 

 
• A higher loading rate should be employed to allow the process to shift the critical 

point reach higher pressures and better water quality.  A more detailed analysis is 
needed to better quantify the ideal loading rate.   

 
• The following is a potential membrane selection strategy: 
 

1. Identify the critical point for each perspective membrane at various temperatures. 
2. Determine the optimal loading rate for that membrane. 
3. Employ operating conditions determined from steps 1 and 2 for Pass 1. 
4. Optimize Pass 2 to achieve the desired water quality. 
5. Determine the net operating energy under overall optimized conditions, and 

compare to baseline conditions. 
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